# 軽量鉄骨下地間仕切壁の面外曲げ特性に関する基礎的検討



建築研究所 国立研究開発法人 建築生産研究グループ 研究員 沖 佑典

#### I.背景·目的

- 軽量鉄骨下地間仕切壁(LGS壁)の被害が確認され ている。
- ・LGSの規格はJISなどがあるが、需要に応じた様々 な仕様等に対して耐震性をとらえた知見は少ない。 →JISに基づくLGS壁の面外曲げに対する耐震性の把

握を目的として実験を行った。



熊本地震における被害 (H28パネル展示より)

## Ⅱ.静的曲げ実験概要

F/2

(正方向)

sせっこう

ボード

裏貼

せっこう

ボード

表貼

125

立面図



スタッド

鋼製外枠

(下側)

200

√スタッド

450

850

伏図

200

タッピン

ねじ位置

固定なし 固定あり ランナー・ス

れ止

め

スタッド・

振れ止め・

スペーサ

タッド差込部

## 軽量鉄骨下地間仕切壁の面外曲げ特性に関する基礎的検討

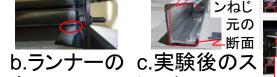


建築研究所 国立研究開発法人 建築生産研究グループ 研究員 沖 佑典

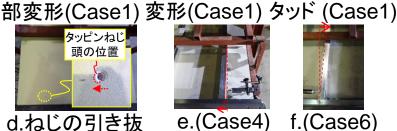
### 皿.試験結果

以下の知見を得た。

- スタッドの局部変形で耐力が決定
- ・ボード両面貼/片面貼の差異は剛性・耐力 にも影響する
- ・負方向の剛性・耐力が正方向と同等か高い
- スタッドとランナーを接合すると、最大耐力
- が若干上昇する また、試験結果(高さ1.62mの壁相当)の最


大耐力を、高さ4m(JISによる65形の上限) の最大耐力相当の水平震度(下表赤枠)に

換算した。 →文献7(本講演テキスト参照)の設計用標


準水平震度を超える1.5以上となっている。



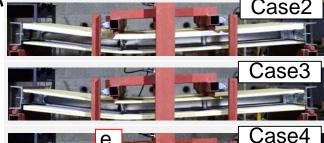


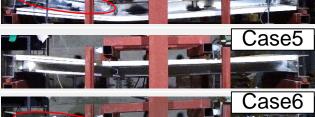


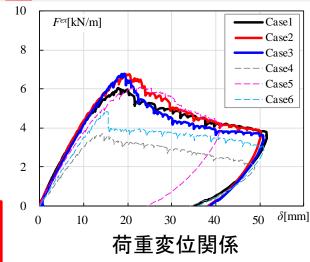







き(Case1) スタッドのねじれ


表 各試験体の結果、最大耐力に対する 喜さ4mの換質水平雲度


| 試験体名<br>(括弧内下線太字は<br>Caselと異なる部分を示す。) | 1m <sup>2</sup><br>当たり<br>質量<br>(kg/m <sup>2</sup> ) | 幅1m<br>当たり<br>最大耐力<br>$F_{\rm max}^{ex}$ | 幅1m当た<br>り等価曲げ<br>剛性 <i>EI</i> <sup>7)</sup><br>(kNm <sup>2</sup> /m) | 最大曲げ<br>モーメント<br><i>M <sup>ex</sup></i> <sub>max</sub> | 高さ4m<br>水平震度<br>k |                                       |
|---------------------------------------|------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|-------------------|---------------------------------------|
| Case1 (2枚+1枚,固定なし,正載荷)                | 28.9                                                 | 6.04                                     | 35.3                                                                  | 1.63                                                   | 1.8               |                                       |
| Case2 (2枚+1枚,固定なし, <u>負載荷</u> )       | 28.7                                                 | 6.76                                     | 34.0                                                                  | 1.82                                                   | 2.0               | ֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ |
| Case3 (2枚+1枚, <b>固定あり</b> ,正載荷)       | 29.1                                                 | 6.78                                     | 32.3                                                                  | 1.83                                                   | 2.0               |                                       |
| Case4 (2枚+0枚,固定なし,正載荷)                | 20.8                                                 | 3.71                                     | 22.9                                                                  | 1.00                                                   | 1.5               |                                       |
| Case5 (2枚+0枚,固定なし,負載荷)                | 20.8                                                 | 6.09                                     | 30.2                                                                  | 1.64                                                   | 2.5               | 1                                     |
| Coco 6 (2枚 ) 0枚 国党 N 正載意)             | 20.6                                                 | 1 00                                     | 26.7                                                                  | 1 22                                                   | 2.0               | -                                     |

|試験前(Case1)|  $\square F/2 F/2 \square$ 









**謝辞** 本研究の一部は、建築研究開発コンソーシ アム研究会「軽量鉄骨下地乾式間仕切り壁の地震 時損傷抑制に関する研究」(提案者:清家剛准教授 (東京大学))において貴重なご意見を賜りました。 また、東京理科大学との連携大学院により永野正 行研究室の協力を得ました。ここに謝意を表しま